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We consider model problems for the tear film over multiple blink cycles in limits
that yield a single equation for the tear film; the single nonlinear partial differential
equation that governs the film thickness arises from lubrication theory. The two
models arise from considering the absence of naturally occurring surfactant and the
case when the surfactant strongly affects the surface tension. The film is considered
on a sinusoidally varying domain length with specified film thickness and volume
flux at each end; only one end of the domain is moving, which is analogous to
the upper eyelid moving with each blink. A main contribution of this article is
computation of solutions for multiple complete blink cycles; the results of these non-
trivial computations show a distinct similarity to quantitative in vivo observations
of the tear film under partial blink conditions. A transition between periodic and
non-periodic solutions has been estimated and this may be a criterion for what is
effectively a full blink according to fluid dynamic considerations.

1. Introduction
We create and solve a model problem for the evolution of tear film over multiple

blink cycles. The blink cycle includes the upstroke of the eyelid when the tear film
is formed, the open phase where the lids are fully open, and the downstroke of the
eyelid where film regeneration is begun. Papers containing theoretical descriptions of
the human tear film fall into three categories. The first and largest category describes
evolution of the tear film during the open phase of the blink cycle; Jones et al. (2005,
2006) recently initiated work in the second category which treats both the upstroke
and open phases of the blink cycle. To our knowledge, Braun (2006) and this paper
comprise the third category in which the entire blink cycle is treated.

In this paper we study two model problems which include many essential elements
of the blink cycle that forms the tear film. The tear film is assumed to be a Newtonian
fluid and lubrication theory is applied to a two-dimensional model geometry for the
eye. The problems incorporate two models for the deforming tear–air interface of
the tear film: a clean interface (assumes a pure tear fluid) and a uniform stretching
model of the interface (resulting from a strong insoluble surfactant). The equations
are new because they incorporate slip at the eye surface. In this paper we present new
results for complete blink cycles approximating the tear film, for the minimum blink
required to completely renew the tear film and comparison with quantitative in vivo
tear film thickness measurements; these results go well beyond those of Braun (2006).
This paper is the first, to our knowledge, to compare the computed film profiles with
quantitative partial blink tear film thickness measurements. We begin with a brief
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Figure 1. A sketch of the pre-corneal tear film. Here C denotes the cornea, M a possible
mucus layer, A the aqueous layer and L the lipid layer. Typical thicknesses for are given for
each layer in microns. The roles of the lipid and mucus layers will be reduced to appropriate
boundary conditions for the aqueous layer. Following Berger & Corrsin (1974), the cornea is
modelled as a flat wall because the tear film thickness is very small compared to the radius of
curvature of the eye surface.

introduction to the tear film and then describe relevant prior theoretical treatments
of it.

The human tear film has been considered to be a three-layer film that plays a
number of roles in maintaining the health and function of the eye (Ehlers 1965;
Mishima 1965). A sketch of the eye and the overlying tear film is shown in figure 1.
Mucus is secreted from goblet cells and provides a possible first layer above the
epithelial cells (Rolando & Refojo 1983; Sharma, Khanna & Reiter 1999); such a
mucus layer is thought to be gel-forming mucins that are found among the bumps, or
microplicae, and among long trans-membrane mucins that protrude (about 0.3 µm)
from those microplicae (Gipson 2004; Bron et al. 2004; Chen et al. 1997). The surface
of these mucins is modelled by a smooth surface for the purposes of fluid dynamic
modelling after Braun & Fitt (2003), for example.

The aqueous layer is primarily water (about 98 %, with a variety of components
forming the balance) and lies above the cornea and any possible mucus layer (Mishima
1965; Fatt & Weissman 1992); the aqueous layer is, essentially, what is commonly
thought of as tears. King-Smith et al. (2004) point out that the interface between
the aqueous and mucus layer, if there is a sharp interface, is difficult to observe
experimentally and no such interface is observed in vivo with interferometry or other
optical means; see also the discussion of the rat tear film in Chen et al. (1997). We
note that consideration of the mucus layer as a separate entity from the other layers
of the tear film is still a matter of debate which will not be settled here. In this work,
we will take the tear film thickness to be in the range of 2.5 to 5 µm, consistent with
in vivo interferometric measurements (Fogt, King-Smith & Tuell 1998; King-Smith
et al. 2000; Nichols & King-Smith 2003; King-Smith et al. 2004) and optical coherence
tomography (Wang et al. 2003).

The outermost (lipid) layer is composed of a non-polar layer above the aqueous
layer with polar surfactants at the aqueous/lipid interface (McCulley & Shine 1997;
Bron et al. 2004); it decreases the surface tension of, and the evaporation rate from,
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the air/tear film interface and thus helps stabilize the tear film against rupture (‘tear
film break up’ in the eye literature).

In this work we focus on the evolution of the aqueous layer and, based on the
arguments in Braun & Fitt (2003), Zhang, Matar & Craster (2003b) and references
therein, we assume that any mucus/aqueous interface is a flat boundary with
hydrodynamic slip while the lipid layer is either ignored or modelled as a deformable,
uniformly stretching surface.

We now turn to prior work on fluid dynamic theory of the tear film. In a series of
papers by Tiffany and coworkers, the human tear film has been shown to be weakly
shear thinning (Tiffany 1991, 1994; Pandit et al. 1999) and have very small elasticity
(Tiffany 1994). In these papers, tear fluid was extracted from the eye and then its
viscosity and storage modulus measured for different shear rates using a commercial
viscometer. Some differences in the shear thinning was observed between normal tears
and those from marginally dry eye patients (Tiffany 1991), and how to incorporate
this information about the tear film is a significant question. Computations for slot
coating with viscoelastic fluids, which are driven thin films, typically show little effect
on the surface shape, but may have dramatically altered stress profiles in the fluid
(Lee, Shaqfeh & Khomami 2002; Pasquali & Scriven 2002). Perturbation approaches
to thin film problems can certainly show some differences (Zhang, Matar & Craster
2003a; Myers 2005) and including general effects in a perturbation approach must
be handled with some care due to the presence of steep gradients in the stress fields
over a very wide range of parameter space (Beris et al. 1983; Zhang & Li 2005). We
consider only a Newtonian film and non-Newtonian effects are beyond the scope of
this paper.

Theoretical studies of the pre-corneal tear film in the open phase include Braun &
Fitt (2003), Wong, Fatt & Radke (1996), Sharma et al. (1998) and Miller, Polse &
Radke (2003); all of these have used Newtonian film properties but Wong et al. (1996)
were the first to use the tangentially immobile approximation for the tear film surface.
All of these studies found that reasonable times to rupture were possible in various
lubrication models for the thin film evolution and all found tα thinning, with α = −0.45
or −0.46, of the thinnest point in the film (located near the menisci). Korb & Herman
(1979) show that this ‘black line’ region near the meniscus can give rise to corneal
staining that is presumably due to film rupture and subsequent epithelial damage.
Braun & Fitt (2003) and Wong et al. (1996) used standard lubrication theory; Sharma
et al. (1998) kept the full curvature term from the normal stress condition on the tear
film surface in an effort to incorporate the meniscus in an improved fashion. Miller
et al. (2003) also kept the full curvature of the tear film surface, but the boundary
condition that was intended to be a no-flux condition in that paper is inconsistent
with their evolution equation for the film; the overall conclusions are expected to be
roughly correct however.

Braun & Fitt (2003) added gravitational and evaporative effects. Gravity was shown
to contribute to Newtonian tear film evolution if the film is assumed to have a typical
thickness of 10 µm. Under those conditions, gravity breaks symmetry between the
upper and lower mensici and adds a bias for the tear film to break up (rupture)
in the upper part of the tear film due to decreased film thickness there. Gravity
typically makes a small contribution for normal interblink times on the order of
5 s and for the smaller, more recently measured tear film thicknesses of about 3 µm
(King-Smith et al. 2004; Wang et al. 2003). In Braun & Fitt (2003), it was also shown
that evaporation could combine with capillary-driven thinning to accelerate tear film
breakup. The effect was greater than would be expected due to evaporation alone
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because the evaporative thinning and capillary-driven thinning cooperated so that
evaporation was important late in the thinning process near the menisci.

The formation of the tear film was studied as a coating problem first by Wong
et al. (1996), using a quasi-steady analysis that modified the Landau–Levich dip
coating problem (Levich 1962; Probstein 1994); both drainage and formation were
studied. They predicted a reasonable range of thicknesses in the micron range from
their theory; Creech et al. (1998) used the approach to derive tear film thicknesses
from meniscus radius measurements and tear film thicknesses from 2.4 to 24 µm were
estimated. More recent work analysing the tear film volume suggests that this theory
may be insufficient to spread the tear film without a supply of tear film from under
the lids (King-Smith et al. 2004).

Models for tear film were significantly advanced by Jones et al. (2005); they
developed a lubrication model that allowed the combined study of film formation
during the eyelid upstroke and the evolution during the open phase. Their model
did not include the downstroke and so did not compute a complete blink cycle.
They also incorporated model fluxes to approximate tear supply from beneath the
moving upper eyelid. They found that no-flux conditions did not allow sufficient
coverage of the underlying surface and that a flux of tear fluid from the eyelids
was needed to provide adequate coverage; this conclusion supported the analysis
based on available tear volume by King-Smith et al. (2004). They also verified that,
in most cases, the piecewise parabolic initial conditions often used in previous tear
film drainage calculations during the open phase produced results quite similar
to those where the film was generated from an upstroke and then allowed to
evolve.

Braun (2006) began studying the blink cycle theoretically by using sinusoidal lid
motion and with sinusoidal fluxes through the ends. Using that simplified blink
model, he found solutions for multiple blink cycles using both full and partial blink
cycles. The model motion and flux functions are chosen as an initial step toward
incorporating the theory of the lacrimal drainage system due to Doane (1981) for the
blink cycle in the thin film evolution on the eye surface. In Doane’s theory, each blink
cycle has a period at the end of the upstroke and beginning of the open phase in
which tear fluid may be extracted from the tear film and drained down the canuliculi
(Doane 1981); the theories of Jones and coworkers have not taken this aspect of
the tear film into account. Periodic solutions for the film were observed for ‘full’
blink cycles while this aspect of the evolution is lost for partial blinks; the transition
between these two behaviours reveals a minimum blink required to completely ‘reset’
the tear film.

While this work was being concluded, Jones et al. (2006) further advanced tear film
modelling by developing a model of the tear film with a mobile surface and a model
insoluble surfactant. They calibrated their model with experimental observation of
particle motions from Owens & Phillips (2001). They found thin regions of tear fluid
that propagated superiorly (toward the upper lid) following the upstroke which began
from a partly open position. This behaviour was also observed using flourescein dye
in vivo, but the observations are limited to a qualitative nature.

In this work, we continue to study the simplified tear film with sinusoidal lid
motion and fluxes. A more complete exploration of the model behaviour is given
in comparison to Braun (2006); this includes results for the dependence of the
transition between periodic and non-periodic solutions on the tear film volume. A
mathematical derivation of the uniform stretching limit (the strong surfactant case) is
also given here. We find an encouraging comparison between partial blink modelling
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Figure 2. A sketch of the pre-corneal tear film indicating important mathematical quantities.
The dimensional upper lid location is X′(t ′); this end moves in blink cycle models.

as carried out here with in vivo measurement of the pre-lens tear film thickness which
is quantitative.

We begin with the problem formulation in the next section, then present results in
§ 3, followed by discussion and conclusions in subsequent sections.

2. Formulation
A sketch of the mathematical model for the tear film is shown in figure 2.

The coordinate directions (x, y) and velocity components (u, v) are along and
perpendicular to the flat surface that approximates the corneal surface. The scalings
are as follows. L′ = 5 mm is half the width of the palpebral fissure and is taken
in the x-direction; the characteristic thickness of the tear film away from the ends
is d =5 µm. The ratio of the length scales, ε = d/L′, is the small parameter for
lubrication theory; for the above scales, ε ≈ 10−3. The velocity scale along the film is
the maximum or mean blink closing speed, Um =10–30 cm s−1 for the maximum speed
case (Doane 1980; Berke & Mueller 1998); however, we will not be able to achieve this
parameter range with our current numerical method. εUm is the characteristic speed
across the film. The time scale is L′/Um =0.05 s for real blink speeds. We will use the
following properties: the surface tension σ0 = 45 mN m−1, the density ρ =103 kg m−3,
the viscosity µ =10−3 Pa s and g = 9.81 m s−2. The subscript 0 indicates evaluation at
a reference value; in this case, we view it as the fully open state with lowest average
surface concentration as this value was measured from open eyes. The pressure p is
made non-dimensional with the viscous scale µUm/(dε).

Non-dimensionalization results in the following leading-order parallel flow problem
on 0 � y � h(x, t):

ux + vy = 0, uyy − px + G = 0, py = 0. (2.1)

The equations are for mass conservation, and momentum conservation in the x

and y directions, respectively. The inertial terms in the x-component of momentum
conservation are proportional to εRe where Re = ρUmd/µ is the Reynolds number;
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using the small value of Um, Re ≈ 1, but the factor εRe is small and we neglect it.
The inertial terms in the other momentum equation are proportional to ε3Re and the
viscous terms are O(ε2) or smaller. Here

G =
ρgd2

µUm

(2.2)

is the Stokes number. For typical blink conditions and normal tear film thicknesses,
G ≈ 2.5 × 10−3. The small Stokes number means that computations will have to
continue for long times to see any significant effect of gravity; results of Jones et al.
(2005) illustrated this and we will neglect it in this paper.

On the impermeable wall at y = 0 the boundary conditions are

u = βuy, v = 0; (2.3)

the first condition is the Navier slip condition and the second is impermeability. Here
β = Ls/d is the slip coefficient where Ls is the slip length; this parameter was discussed
in Braun & Fitt (2003) and was expected to be in the range 10−3 � β � 10−2. One may
also argue that Ls is based on a molecular length scale, and perhaps the largest size is
that of membrane-bound mucins at about 0.3 µm; using this scale gives β ≈ 10−1 but
this is probably too large for the tear fluid. Using the size of water molecules gives
a much smaller β but this ignores any mucin effect. The slip condition is required
to relieve a stress singularity at the junction of the lid with the eye surface if the
eyelid is assumed to act as a ‘windshield wiper,’ while opening and closing, similar
to the problem with a moving contact line. The case can be made that there is a
fluid film under the moving lid that prevents a singularity from the putative surface
of the cornea (Jones et al. 2005; Huh & Scriven 1971), but there still may be slip at
the surface of the eye (Zhang et al. 2003b) due to the complex surface there (Gipson
2004; Bron et al. 2004). We assume that values of slip at the corneal surface are
near the large end of the available range as indicated above, in alignment with these
authors, and we choose to include slip in an attempt to model this surface more
closely and we choose β = 10−2 in all cases. We do not include any intermolecular or
van der Waals forces here; they will be treated in a future paper.

At the free surface, we have the kinematic and stress conditions

ht + uhx = v, p = −Shxx, uy = MΓx, (2.4)

where

S =
ε3

Ca
=

ε3σ

µUm

, M =

(
Γ

∂σ

∂Γ

)
0

ε

µU
=

M̂

ε
. (2.5)

Here Ca = µUm/σ0; for the lowest maximum speed, we find Ca ≈ 2 × 10−3 and
S ≈ 5 × 10−7; such small values will not be accessible and we will discuss this further.
Γ = Γ (x, h, t) is the surface concentration of a polar component of the lipid layer at
the lipid–aqueous surface; this is what we mean by the surfactant on the free surface.
We estimate that (Γ ∂σ/∂Γ )0 = 0.01 Nm−1, and using real blink parameters, we
estimate M̂ = 10−4 and M = 0.1. This is a significant value for the Marangoni effect
that is plausible in comparison with ocular surface observations (Berger & Corrsin
1974; Owens & Phillips 2001). The surface concentration of a polar component of
the lipid layer at the lipid–aqueous interface is governed by the transport equation

Γt +
(
u(s)Γ

)
x

= P −1Γxx. (2.6)
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Here u(s) is the surface velocity, P −1 = D/L′U is the Péclet number and D is the
surface diffusivity of Γ . With D = 10−9m2 s−1, we estimate P −1 ≈ 2×10−6; diffusion of
surfactant is small during the blink itself and the surface diffusion term is neglected.

The two cases of this paper differ in the treatment of the tangential stress boundary
condition. In § 2.1, the film is treated as a pure liquid with a clean surface in contact
with a passive gas. In § 2.2, the pure fluid has an insoluble surfactant at its interface
with the passive gas, and the effect on the surface tension is so strong that the surface
responds in a manner that is analogous to the tangentially immobile case when the
domain length is fixed. Jones et al. (2005) called these limits the inactive and active
lipid layers, respectively; we shall use the terms stress-free and uniform stretching.

In either case, the flux is given by

Q =

∫ h

0

u(x, y, t) dy, (2.7)

then, using the kinematic condition and mass conservation, the free surface evolution
is given by

ht + Qx = 0. (2.8)

The small capillary number means that there will be localized regions on the order
of S1/3 in width that will occur in the opening part of the cycle. We study the result
from typical lubrication-type models, and we will retain the average surface tension
in S and its variation via limiting cases of M as well as slip β in order to investigate
the effect of the moving film end.

2.1. Stress-free free surface

If we now consider solving (2.1) subject to (2.3) and the stress-free boundary condition

uy(x, h(x, t), t) = 0, (2.9)

we find

u = (−px + G)h (y + β) − (−px + G)
y2

2
(2.10)

and

Q = (−px + G)

(
h3

3
+ βh2

)
. (2.11)

Substitution into (2.8) yields a standard evolution for h(x, t) that can be found in
Oron, Davis & Bankoff (1997) for example.

2.2. Large-M limit

When the Marangoni effect is very strong, there is another simplification to a single
equation. This uniform-stretching limit was first proposed by Jones et al. (2005) to
our knowledge, but they did not give a derivation of this limit and we give one here.
The tangential stress condition requires Γx = 0 on the free surface in this limit. The
surfactant transport equation becomes

Γt + u(s)
x Γ = 0. (2.12)

Because the concentration is spatially uniform but still time-varying, we may write

Γ =
2L

L − X(t)
Γm,

dΓ

dt
=

2L

(L − X(t))2
XtΓm. (2.13)



472 R. J. Braun and P. E. King-Smith

Here Γm is a constant and is the minimum concentration during the cycle (fully
extended domain). Substitution into the surfactant transport equation gives

u(s)
x = − Xt

L − X
; (2.14)

solving the ODE for u(s) and using u(s)(L, t) = 0 gives

u(s) = Xt

L − x

L − X
. (2.15)

Computing the flux yields

Q(x, t) =
h3

12

(
1 +

3β

h + β

)
(Shxxx + G) + Xt

L − x

L − X

h

2

(
1 +

β

h + β

)
(2.16)

and substituting into (2.8) yields the single PDE for h(x, t) in this case. Note that if
Xt = 0, we recover the equation for the free surface with slip on the bottom surface
but a tangentially immobile (M � 1) free surface. If β = 0 as well, we recover the
tangentially immobile case with a no-slip bottom surface.

2.3. Film ends: lid motion and boundary conditions

The film is contained in the interval X(t) � x � L. At the right-hand end of the
domain, x = L and this boundary location will be fixed for all time. At the left-hand
end, x = X(t), we apply the same kinds of boundary conditions; when X = −L, the
film is fully open. L = 1 in this paper.

At the ends of the film, we have a specified film thickness and volume flux. In
Bron et al. (2004) and references therein, the tear film is thought to remain pinned
in the neighbourhood of the exits from the meibomian glands; this is our motivation
for fixing the film thickness. We note that there may be other possible boundary
conditions, particularly under extreme conditions, but they are beyond the scope of
this paper. The film thickness is pinned at h0 = 13 at the ends for all cases in this
paper.

A mathematical fit to the lid position at the centre of the palpebral fissure was
obtained by Berke & Mueller (1998) for the data in Berke & Mueller (1996);
comparison was made with similar data of Doane (1980). Blink data were also
measured and fit by Jones et al. (2005); they only computed solutions for the upstroke
of the eyelid and subsequent open time. Here, the upper lid position is given by

X(t) = L[(1 − λ) cos(t) − λ]; (2.17)

λ is the fraction of the fully open region that is still open when the domain is at
its smallest. We shall consider λ = 0.1 as fully closed for the purposes of this paper.
With λ = 0.5, the domain half closes during the blink cycle. This is simpler than the
measurements and fits that appear in the literature for the complete blink cycle, but we
consider sinusoidal motion in order to understand a fundamental case of a complete
blink cycle for later comparison with measured motions (Heryudono et al. 2007).

We study only sinusoidal fluxes from the tear film ends. These fluxes model the
flow along the lids during the blink cycle as described by Doane (1981). We note that
there are limitations to using sinusoidal flux functions, but we are satisfied that they
are adequate to begin understanding this model system. We use the non-dimensional
flux functions

Qtop = QmT + Q0T sin(t + φ) at x = X(t), (2.18)

Qbot = QmT [sin(t + φ) − 1], at x = L. (2.19)
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Figure 3. An example of the lid motion X(t) and boundary fluxes Qbot and Qtop for λ = 0.1,
QmT = 0.5, Q0T = 1 and ψ = π/4. The domain is fully open at t = π with X = −1 and
fully closed at t = 0, 2π with X = 1 − 2λ. The upstroke (opening phase of the blink) is from
0 < t < π and the downstroke (closing phase) is from π < t < 2π. Note that Qtop becomes
negative after the domain is fully open.

The choice for Qbot ensures that the tear film volume is conserved over a blink cycle of
duration 2π. The mean value of the volume flux in at the top, QmT , and the amplitude
of the oscillation of the flux, Q0T for the zero-mean part, are specified as input
parameters. The mean level of flow from the lacrimal gland has been estimated to be
about 1.2 µl min−1 (Mishima 1965); non-dimensionalizing this flux with UmdL gives
QmT = 0.01, which assumes that the influx of new tears is spread out uniformly along
the upper eyelid. We study flux values on this order, which we believe is reasonable
given the assumed motion of the ends.

Typically, the phase offset from the lid location, φ = φ0, is computed so that outflux
at the top begins when the domain is at its largest; this requires, after enforcing
Qtop(π) = 0 and some trigonometric manipulation,

φ0 = sin−1(QmT /Q0T ). (2.20)

Note that the amplitude of the oscillation Q0T must be at least as large as the mean
value QmT in order for φ0 to exist. We will also examine more general phase shifts

φ = φ0 − ψ. (2.21)

An example is shown in figure 3 with ψ > 0; note that the beginning of the outward
flux from the top end (x = X(t) or ξ = −1) begins after the domain is longest
(X(π) = −1). Finally, the fluxes at each end were chosen to be in phase with each
other due to the expected simultaneous opening of the canaliculi in the blink process
in eyes (Doane 1981). The addition of an outflux from the ends is a new component
of the modelling which was not present in that of Jones et al. (2005) and it represents
a step toward constructing models which employ the Doane (1981) blink cycle model.
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2.4. Initial condition

For the purposes of numerical solution, we find it convenient to transform the domain
X(t) � x � L to a fixed domain −1 � ξ � 1 via

ξ = 1 − 2
L − x

L − X(t)
. (2.22)

(Details are in the Appendix.) Using the change of variable h(x, t) = H (ξ (t), t), the
initial condition is most easily specified in terms of these new variables. We use the
polynomial initial condition

h(x, 0) = Hmin + (h0 − Hmin)ξ
m; (2.23)

this initial shape is applied when the domain is at its shortest, and the computation
starts from this ‘closed’ state. Values from m = 4 to 16 were used. Hmin was chosen
to achieve the desired volume; h0 = 13 as mentioned above.

We considered two initial volumes (areas) V0 = 1.576 and V0 = 2.576. The latter
comes from estimating the volume for a d = 5µm film with quadratic menisci having
width 0.36 mm and height h0d at both ends. The former is a lower volume that
simulates a reduced tear volume from a 2.5 µm film with the film ends the same
height as the other case.

3. Results
3.1. Numerical method

A uniformly spaced mesh in x was used. Centred second-order-accurate finite
difference approximations were used for the derivatives in a conservative form for the
PDE; the same spatial discretization was used in Braun & Fitt (2003). Non-centred
differences were used at the ends where appropriate. The resulting ODEs are solved
using DASPK (Brenan, Campbell & Petzold 1996) in order to facilitate generalization
to differential-algebraic equations if needed. To obtain sufficient accuracy as measured
by conservation of volume to within 0.5 % with no-flux end conditions, 4095 interior
grid points were used. This was found to be the maximum number of points that
could reliably be used with this approach.

Our numerical method is unable to reach the parameter range in S described
above; we will investigate the range 10−3 � S � 2 × 10−5 in this work, corresponding
to slower end motion than actual blinks. However, a transition in behaviour occurs
within this regime that we believe makes this range relevant.

3.2. Stress-free surface

Results for the full blink and no flux through the ends are shown in figure 4. In
this case, λ = 0.1 and so only 10 % of the film length is left then the film is closed.
The entire film thickness at several times is shown in figure 4(a). This thickness is
low for real tear films, but is useful for studying the behaviour in lubrication theory.
In this case, S = 10−4, which is too large for eyes but is an intermediate value for
the computational range that we can access. The results show that the film does
not rupture in this case; this is more clearly seen in figure 4(b), a close-up in the
y-direction. The film shape repeats past t = 2π, beginning with that film shape, and
we believe this has two causes because of two things. One is that the underlying flow
is slow viscous flow according to the Stokes equations, whose results are known to be
reversible. The second is that when the lids are fully closed, the film has essentially
been entirely swept up into a small region and then respread over the substrate; this
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Figure 4. Film thickness with S = 10−4, λ = 0.1,m = 4, zero boundary fluxes at the ends of
the film and V0 = 2.576. (a) Various times during a complete blink cycle, as indicated in each
panel. (b) A close-up in the vertical direction of the same results.

is a favourable situation because relatively slow relaxation of the film shape caused
by surface tension is completely erased by each blink.

Note that in these film shapes, the minimum value is sometimes at the right-hand
end of the film and sometimes the left; while the film shapes as a function of x are
smooth and well behaved, plotting the mininum film thickness as a function of time
develops jumps in the slope. Figure 5 shows the time dependence of the minimum
film thickness for the no-flux boundary conditions, λ = 0.1 and several values of S,
the surface tension number, for 0 � t � 4π (two periods of end motion). The steep
downward spikes are due to the minimum near the moving end and the rounded
tops are for the times near full closure; the less steep parts between are from the
right-hand end. The curves are complicated but periodic.

For the non-zero boundary fluxes given by QmT = 0.04 and Q0T = 0.08 and λ = 0.1,
periodicity remains. Plots of hmin(t) in figure 6 with and without the boundary flux
confirm this. The plots also show that the minimum film thickness is increased when
these boundary fluxes are added.
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Figure 5. Minimum film thickness as function of time with λ = 0.1,m = 4, V0 = 1.576, and
no-flux boundaries (QmT = Q0T = 0) at the ends of the film; results for several S are shown.
The sudden changes in slope occur when the minimum film location switches ends of the film.
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Figure 6. Minimum film thickness as function of time with λ = 0.1, V0 = 2.576,m = 8 and
different boundary fluxes. At t values that are odd multiples of π, the minimum film thickness
is larger in the case with non-zero flux.

Results for a half-blink case are shown in figure 7; here the flux at both ends is
zero. On the left half of the plot, we see a coating flow that leaves behind a tapering
film. This half repeats to graphical accuracy; on the right half, slow capillary-driven
motion is occurring, particularly near the right-hand boundary. Where the end sweeps
the domain, the film is ‘reset’ and the film preserved; otherwise, without flux from the
boundary, capillarity slowly thins the right-hand end of the film. The slow capillary
thinning is reminiscent of black line formation in eyes, as has been discussed by a
number of authors (Wong et al. 1996; Sharma et al. 1998; Braun & Fitt 2003; Miller
et al. 2003; Jones et al. 2005).

The effect of the initial condition is shown in figure 8. Increasing the exponent m

causes a higher, flatter middle region in the initial shape for the smaller volume case;
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Figure 7. Film thickness h(x, t) at various times with λ = 0.5, S = 2×10−5, m = 16, V0 = 1.576
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Figure 8. The initial condition has a significant effect on the film thickness, shown at t = π
in each case, under partial blink conditions, λ = 0.5, S = 2 × 10−5,QmT = Q0T = 0. (a)
V0 = 1.576; (b) V0 = 2.576.

the incomplete sweeping action and relatively low value of S then cause this feature
to persist, resulting in the plateau on the right for larger m. For the larger volume
case (figure 8b), the initial minimum film thickness is significantly larger and so the
plateau region relaxes more rapidly from capillarity.

The minimum film thickness, for λ = 0.5, no-flux boundary conditions and several
values of S, is shown in figure 9. In this case, the slow downward curve corresponds
to the local minimum near the right-hand end of the film (x = 1) and the sudden
downward spikes are from the blink motion causing a local minimum near the
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Figure 10. Film thickness at various times with λ = 0.5, V0 = 1.576, QmT = 0.02, and
Q0T = 0.04. A buildup of film thickness appears to the left of the plateau when the film is
fully extended at t = 3π; compare the panels at π and 3π. Fluid supplied from the moving end
does not flow across the entire film length.

left-hand end of the film (x = −1). The case with larger film area retains the rapidly
decreasing minimum from the moving end at larger values S, while the other does not.
For S > 10−3, the results are not reliable at longer times because the film thickness
approaches the size of the grid step.

When there is flux through the ends of the film and a half-blink occurs, there is
significant change; results are shown in figures 10 to 12. In figure 10, a buildup of
film thickness appears to the left of the plateau when the film is fully extended. This
occurs because the flux supplied from the moving end does not flow across the film;
the slowly relaxing right-hand side of the film acts as a barrier for this newly supplied
fluid. At the right-hand (fixed) end, there is a net outflow of tear fluid and this causes
breakup of the film. The film appeared to touch down just after t = 4π according
to the computation; we believe that the computation loses accuracy once the film
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Figure 12. Minimum film thickness with time for m = 8, S = 2 × 10−5, λ = 0.5, and different
boundary fluxes. (a) V0 = 1.576; (b) V0 = 2.576. At about t = π, the minimum film thickness
(left-hand end) is larger in the case with non-zero flux. The right-hand end is thinned by the
flux and appears to rupture with repeated half blinks in this model.

thickness reaches the mesh size and so we cannot resolve this part of the evolution.
When more liquid is present in the film, as for V0 = 2.576, the plateau that was in
the right half of the film relaxes more rapidly than in the dryer case; figure 11 shows
this case. A bump still forms in the middle of the film because the supplied fluid does
not move across the film in time.

Also, the minimum thickness is significantly increased near the moving lid but
decreased at the other (right-hand) end; this is most easily seen in figure 12. The
smooth, curving portions of the curve correspond to the right-hand end of the film,
which is steadily being drained. The single relatively sudden change comes from the
motion of the left-hand end of the film and it is significantly higher than its no-flux
counterpart (at about t = π). Each succeeding sudden decrease in the minimum film
thickness is less deep than the previous one, due to the influx from the moving
boundary. The increase of the minimum film thickness left behind at the moving
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λ

QmT Q0T V0 = 1.576 V0 = 2.576

0 0 0.178 0.211
0.01 0.02 0.154 0.193
0.02 0.04 0.147 0.187
0.04 0.08 0.142 0.185

Table 1. The beginning of non-periodic behaviour is estimated for the given values of λ at
various boundary flux conditions with S = 2 × 10−5 and h0 = 13. These results are for the
M = 0 or stress-free case. We believe that these estimates are accurate to within ±0.002.
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Figure 13. Film thickness at various times and S values with λ = 0.5, m = 8 and no-flux
boundaries (QmT = Q0T = 0). A bump appears in the middle of the film for the smaller value
of S. The bump is enhanced with time when non-zero flux conditions are used (not shown).
The larger value of S appears to retain more fluid in the menisci.

boundary with an influx of tear fluid from the upper lid agrees with the results of
Jones et al. (2005) for the coating part of the cycle that they studied.

There is also a transition in behaviour in the surface tension number S for the
smaller volume case we considered. Figure 13 shows results for the film thickness at
two different times and two different values of S with no-flux conditions at the ends
during half-blink cycles. The film thickness at the fully open state (t = π), shows
the bump when S = 2 × 10−5, but the bump is absent when S = 10−3. This suggests
that there is a transition from the absence of the bump when surface tension effects
are large enough to the presence of the bump when surface tension effects are weak
enough. Note also the enhanced thinning and black line formation at the right-hand
end when S = 10−3. For the larger volume case, there was no transition like this for
the range of S that we considered.

The different behaviours at different λ suggest that there is a transition in the
behaviour of the film shapes. Using plots of hmin(t) and closely inspecting these
curves allows us to estimate the λ at which the solution becomes periodic for
decreasing λ. Results are shown in table 1; the estimates are given to 3 significant
digits and it would be difficult for our numerical method to determine these values any
better. Introducing flux through the upper and lower boundaries requires a smaller
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λ to maintain periodic behaviour; the narrower gap at the closed state is needed to
offset the net drainage that occurs at the right-hand boundary. Table 1 shows the
approximate boundary between periodic behaviour for different boundary fluxes. As
the flux through the boundaries increases, the gap width at the closed state must
decrease to maintain periodic behaviour of the film. The case with smaller initial
volume appears to be more sensitive to the boundary fluxes.

Finally, we study the phase dependence of the inflow and outflow at the ends by
using non-zero ψ in (2.21). We choose ψ = −π/4, π/4, π/2 and compare to our case
of ψ = 0 considered above. The top and bottom fluxes are kept in phase to remain
consistent with the tear film drainage problem in the eye. The dependence on ψ is
complicated but not dramatic; figure 14 shows the evolution of the minimum film
thickness over the blink cycle for the case with λ = 0.25, S = 2 × 10−5, V0 = 1.576,
QmT = 0.02 and Q0T = 0.08. This case was chosen because it showed a relatively
large effect; the curves with the positive ψ show an increased minimum for the fully
open film, while ψ = −π/4 shows a decreased minimum thickness. Other than these
changes in the minimum, the differences in h(x, t) are relatively small and these results
are omitted.

3.3. Large-M limit

The uniform-stretching, or large-M , limit yieldes similar results with some new
features. In figure 15, we show a time sequence of the case with λ = 0.5 and
S = 2 × 10−5. The same qualitative shape is retained once the domain has fully
opened; the plateau in the right half, in the main, expandes and contractes as the
domain length changes. This is in contrast to the stress-free case where a film is laid
down and then taken up in a nearly reversible manner (as in figure 11, for example).
In the partial blink results of figure 15, the left end shows capillary-driven thinning,
which is similar to the stress-free case.

Another partial blink approximation would be to start the computation in a
more closed state, allow the domain to open, and then start half-blinks; this would
correspond to using a small value, say λ = λ0, in (2.17) for the first half-cycle, then
using a larger λ for any remaining lid motion. Results for starting at λ0 = 0.25,



482 R. J. Braun and P. E. King-Smith

–1 0 1
0

2

h(
x,

 t)

x x

0 π

4π

3π2π

5π

–1 0 1
0

2

–1 0 1
0

2
h(

x,
 t)

–1 0 1
0

2

–1 0 1
0

2

h(
x,

 t)

–1 0 1
0

2

Figure 15. A series of half-blinks starting from the half-closed position (λ = 0.5).
S = 2 × 10−5,m = 8, QmT = Q0T = 0, V0 = 2.576. The effect of uniform stretching is
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Figure 16. A series of half-blinks opening from λ0 = 0.25 and then repeated closing to λ = 0.5
with fluxes through the boundary. S = 2 × 10−5,QmT = 0.02, Q0T = 0.04,m = 8, V0 = 2.576.
The minimum thickness of the initial condition is too high to be seen.

opening fully and then repeatedly closing to λ = 0.5 are shown in figure 16. We see
that the fully open film profiles (odd multiples of π) have a roughly flat region in the
right half with a dip in the centre and a decreasing film thickness on the left. The
film shapes at t = 3π and 5π compare well with our qualitative interpretation of the
in vivo image to be discussed in § 4.

A comparison of the three cases at t = π is shown in figure 17; the uniform-
stretching result is more uniform in thickness than the stress-free result for the same
initial condition in all cases. Figure 17(a) shows results for V0 = 2.576 and m = 8.
For V0 = 1.576, figure 17(b) shows results for m = 16 and figure 17(c) for m = 8.
The reduced variation in thickness for the uniform-stretching case is more easily
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Figure 17. Comparisons of the stress-free (M = 0) and the uniform-stretching limit (M � 1)
at t = π. Initial condition using (a) λ = 0.5, m = 8 and V0 = 2.576; (b) λ = 0.5, m = 16 and
V0 = 1.576; (c) λ = 0.1, m = 8 and V0 = 1.576.

seen for larger m and smaller V0 or for larger V0 and smaller m. Figure 17(b) has a
more pronounced flat region in the right-hand side of the film for either case; this
plateau-type region survived longer for V0 = 1.576 because the thinner film slows
down the capillary-driven smoothing of this part of the film. Figure 17(a) does not
have a separate plateau region, but it does show a film from a partial blink that
attains a good level of uniformity without having an influx through the moving end.
Thus it may not be uniformly true that a flux through the lids is always needed to
produce a sound tear film.

Finally, the amount of closure required to obtain a periodic solution is shown in
table 2; it is more than in the stress-free model, that is, less of the film remains open
in order to achieve periodicity in the solution.

3.4. Experimental thickness and comparison with theory

The partial blink modelling in this paper appears to capture some observed behaviour
in the tear film, despite its simplicity. After the pioneering work of Doane (1989),
King-Smith and coworkers have published a series of papers on measuring the tear
film thickness using interferometry (e.g. King-Smith et al. 2000; Nichols & King-Smith
2003; King-Smith et al. 2004, 2006). The clearest images come from the pre-lens tear
film (PLTF) because the best contrast between tear fluid and the underlying surface
occurs in that case; we use a result from a PLTF for comparison with our simulations
for this reason. A half-blink was captured on film and it showed a distinctive fringe
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λ

QmT Q0T V0 = 1.576 V0 = 2.576

0 0 0.157 0.193
0.01 0.02 0.136 0.189
0.02 0.04 0.131 0.186
0.04 0.08 0.127 0.184

Table 2. The beginning of non-periodic behaviour is estimated for the given values of λ at
various boundary flux conditions with S = 2 × 10−5 and h0 = 13. These results are for the
M � 1 or uniform stretching case. We believe that these estimates are accurate to within
±0.002.
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Figure 18. (a) Interference fringes for the total tear film thickness of the PLTF just after a
half-blink. The horizontal extent of the image is about 8 mm; the thickness difference between
neighbouring bright fringes is 0.32 µm. The upper lid descended to the region of compact fringes
in the middle of the image and then rose to the open position (upper lashes still visible). The
curving feature near the left-hand edge of the illuminated region is the edge of the optic zone
of the lens (see text). (b) Dimensional thickness variation relative to the minimum found was
computed from the image along the vertical line in the upper left quadrant. Comparison of
broad and narrow band contrast leads to an estimated minimum film thickness of 0.48 µm.
This thickness variation compares qualitatively with a number of results in this paper.

pattern; Doane (1980) has pointed out that partial blinks are not uncommon, which
makes this a relevant case for comparison. An image of the PLTF just after a half-
blink is shown in figure 18. The interference fringes shown in the photo are consistent
with the computations in this paper, within the limits of the theory. This can be seen
as follows. Thickness variation was computed from the image in figure 18(a) using
the interference fringes; the variation along the vertical line is shown in figure 18(b).
Near the bottom end of this line, there is a rather flat region (in the lower half of the
figure). Moving up, a rapid decrease in film thickness is encountered about the middle
of the photo, and then an increase in thickness occurs. Finally, in the uppermost
part of the figure, the film thickness decreases once again. We note that the ends
of the film (in particular the menisci and neighbouring regions) are not included in
that comparison because they are not captured in the interference fringe image. Note
also that the variation in space of the film thickness is very gradual because of the
difference in scales for the axes in figure 18(b).



Model problems for the tear film in a blink cycle 485

–1.0 –0.5 0 0.5 1.0
x

0

0.5

1.0

1.5

h(
x,

 t)

3π

shifted expt

5π

expt

Figure 19. Comparison of tear film thickness variation from the interference patterns and the
computed results for the uniform-stretching limit. For the computed results, the ends of the
film started at λ0 = 0.25 and then repeatedly closed to λ = 0.5 with non-zero fluxes through
the ends, QmT = 0.02, Q0T = 0.04, m = 8, v = 2.576. The symbols labelled ‘expt’ used an
estimated minimum tear film thickness of 0.48 µm; the symbols labelled ‘shifted expt’ have
been shifted to have coincident minima with the computed curves.

In order to compare with computed results, this thickness variation from experiment
was non-dimensionalized and shifted so that the minimum film thickness from
measurements coincided with those of the computed results in order to facilitate
comparison. The results are shown in figure 19, with the symbols corresponding to
experimental results. The comparison is qualitative, and seems to be better for the
t = 5π curve; this appears to be a relatively good comparison given the simplified
motion of the ends of the film compared to real blink motions. Trying to make
still closer comparisons for these computed results does not seem appropriate at this
point given the simplifications used in the modelling; we believe that more realistic
lid motion functions and fluxes are required for this purpose. Representative efforts
to obtain the overall thickness closer to the experimental observation is shown in
figure 20; the computed results are shown at t = 3π for various initial conditions.
In that figure, the overall thickness of the film is in better agreement, but the details
of the valley do not match as well. In particular, for smaller volumes, the computed
shape is better for the average thickness and the local minimum in the middle. For
larger initial volumes, the depth of the valley in the middle of the film is better, but
the average thickness of the film is too large by about a factor of 3 for the cases
shown.

The curving feature near the left-hand edge of the illuminated region of figure 18
is the edge of the optic zone of the lens. There is a change in slope at the edge of
the optic zone (typically a 3 mm radius) where the shape of the lens changes from
optical requirements for improved vision to mechanical requirements for comfort and
durability (outside radius of 6 or 7 mm). In this case, the fringes are consistent with
a rapid change in the tear film thickness at the edge of the optic zone.
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Figure 20. Comparison of tear film thickness variation from the interference patterns and
the computed results in the uniform-stretching case at t = 3π (apparently the optimal time for
comparison) and s = 2 × 10−5, QmT = 0.02, Q0T = 0.04. For the computed results, the ends of
the film started at various λ0, V0 and m and then repeatedly closed to λ = 0.5 with non-zero
fluxes through the ends.

4. Discussion
Our results confirm the conclusion of Jones et al. (2005) that the film would rupture

before coating the whole substrate without influx from the moving end for opening
after a complete blink, if van der Waals type forces were present to drive rupture.
This conclusion is reached because in the cases without influx (QmT = Q0T = 0), the
minimum film thickness is significantly lower than 100 nm dimensionally at the fully
open state, and such small thicknesses would be vulnerable to rupture in the presence
of suitable van der Waals forces. In fact, a number of cases that included influx
from the moving end may still be prone to rupture because the minimum thickness
was increased, but typically not enough to avoid the submicron range when the film
reached the fully open state.

However, we note that figure 17(a) had a particularly uniform film shape that
arose from a partial blink in the uniform-stretching model with no-flux boundary
conditions at the lid. This was not seen in simulations that began from a fully closed
state in the work of Jones et al. (2005). They concluded that a tear film could not
be formed without an influx of tears from under the lids; this statement is true for
opening following a complete closure, but it is not true for a half-blink for at least
some models and initial conditions. One must be specific about the conditions when
flux is needed to form a film; we intend to investigate this further in future work.

Adding flux into and out of the film using sinusoidal functions does show that the
minimum film thickness is increased, but for partial blinks, the extraction of fluid
from the stationary end can shorten the life of the film, while increasing the thickness
in the swept portion of the film. If the swept portion is large enough, then the film
thickness appears to be a periodic function according to our numerical results. This
happens because the film is swept up enough to erase any prior evidence of local
minima at either end of the film; this may be a possible explanation as to why
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many blinks do not have the lids completely closed (Doane 1980). The amount of
swept portion that is required to achieve periodic behaviour depends mildly on the
flux conditions at the ends; the larger the flux, the more closed the eye must be to
achieve periodic behaviour. In our model problems, this is because only efflux of tear
fluid occurs at the stationary end corresponding to the bottom lid and so the influx
from the moving end must move near enough to supply new fluid to the stationary
end.

When the eye does not ‘fully close’ enough to cause periodic behaviour, we consider
the blink to be ‘partial’ and the film behaviour has a swept part that is approximately
periodic and an unswept part that is driven by the capillary forces which dominate
in drainage flow after a blink (Braun & Fitt 2003; Wong et al. 1996; Sharma et al.
1998; Miller et al. 2003; McDonald & Brubaker 1971). In the absence of any flux
through the stationary end of the film, there is a slow decay of the minimum film
thickness driven only by capillarity. When a non-zero flux leaving the film is added to
the stationary end, the decrease in h is accelerated and a series of partial blinks in this
case leads to rupture of the film near that end. Thus, in these models, depending on
the conditions, rupture may occur near either end of the film. While tear film breakup
(rupture) in eyes may often occur away from the film edges (Bitton & Lovasik 1998),
there is experimental evidence for breakup near the edges (see e.g. McDonald &
Brubaker 1971; King-Smith et al. 2005).

We do note that similar thickness profiles occur in the corresponding region of the
computed figures 8(a), 10, 16 and 17; to a lesser extent similar profiles are seen in
figure 15. Weaker comparison with measured tear film thicknesses may be seen in
figures 15 and 17(a) because they do not have a deep enough dip in the middle of the
film where the lid would have stopped at t =3π, but figure 15 is the better of the two
in this respect. For many of the stress-free cases, the computed film shapes are less
likely to have a plateau-like region in the right half of a plot corresponding to the
lower part of the fringe pattern. What is perhaps most encouraging is that, for the
uniform-stretching case in particular, similar film shapes arise from several reasonable
computations, and so the result may be robust. Jones et al. (2006) computed film
profiles with valleys in the middle of the film from partial blinks that were not
complete blink cycles for a model with mobile free surface and surfactant transport
as well.

The maximum amount of open eye during the blink that still allowed periodic film
evolution was determined empirically from the computations. This was interpreted as
the range of values that had the same functional effect as a complete closure of the
lids with respect to resetting the tear film after the blink. Knowing these values may
suggest useful values in clinical settings for what range of blinks works as effectively
as completely closed lids for the purpose of regenerating the tear film.

5. Conclusion
Despite the simplified nature of our model problems, there are some encouraging

comparisons that may be made with observations of the tear film. First, multiple
blink cycles were computed. These blink cycle models have given some insight into
when a blink is effectively behaving as a complete one, using periodicity as a test of
the effectiveness of a blink. Differences between the limiting cases of stress-free and
uniformly-stretching surfaces were found, and the stretching of film shapes in the
latter case could certainly be observed. The models also gave qualitative agreement
with observed tear film thickness profiles measured in vivo following a half-blink.
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In this paper, we developed a theoretical foundation for the blink cycle assuming
sinusoidal lid motion and boundary flux functions. While this is a beginning, it is
important to implement the models with realistic lid motion functions (Jones et al.
2005; Doane 1980; Berke & Mueller 1996, 1998); results for that case are in hand
(Heryudono et al. 2007). Additional extensions underway are a model with a mobile
free surface and surfactant transport. We believe that these new ingredients will
continue to bring new insights into tear film formation and drainage.
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at the University of Minnesota for its hospitality during parts of this work. P. E.K. S.
thanks J. J. and K.K. Nichols, B.A. Fink and R.M. Hill for their advice and assistance.
This work was supported in part by NSF grant DMS-0616483.

Appendix. Fixed domain and initial conditions
In order to solve these problems numerically, we map them to a fixed domain using

the tranformation (2.22). For the stress-free case mapping onto the fixed domain
results in

Ht − 1 − ξ

L − X
XtHξ +

(
2

L − X

){(
H 3

3
+ βH 2

)[(
2

L − X

)3

SHξξξ + G

]}
ξ

= 0.

This equation is subject to the boundary conditions

H (±1, t) = h0

at each end. At the lower lid (ξ = 1), also

(
h3

0

3
+ βh2

0

)[(
2

L − X

)3

SHξξξ (1, t) + G

]
= −Qbot;

this is the standard flux condition at the stationary wall. At the upper lid (ξ = −1),

(
h3

0

3
+ βh2

0

) [ (
2

L − X

)3

SHξξξ (−1, t) + G

]
= Xth0 + Qtop;

the first term on the right-hand side comes from the volume swept out by the upper
lid, while the left-hand side eliminates that same volume when the imposed flux Qtop

is zero. Note that Qbot and Qtop are the fluxes into the domain.
For the uniform-stretching case
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The boundary conditions are in this case are as follows. The ends are still pinned
at H (±1, t) = h0. At the lower lid (ξ =1),
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for a specified volume flux Qbot through this end. At the upper lid (ξ = −1),

Xt

h0

2

(
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β

h0 + β
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+
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0

12
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